Year 8 - 7 lessons per cycle #### Light | Week | Lesson number/title | Core content | |------|------------------------|---| | 1 | l
Light waves | Describe some properties of light waves Describe what happens when light meets a surface Draw accurate light ray diagrams to illustrate light travelling and meeting different surfaces | | 2 | 2
Reflection | Follow a method to test a given hypothesis Make a conclusion from data collected Process secondary data appropriately and use it to check for reproducibility Draw accurate ray diagrams Know the law of reflection | | 2 | 3
Refraction | Draw the pathway light takes through a glass block. Measure the angle of refraction using a protractor. Describe and explain how refraction takes place using key words and phrases. | | 2 | 4
Vision | Label the parts of the eye Use ray diagrams to show how images are formed in pinhole cameras and the eye Describe how an image is formed and how we see | | 3 | 5
Correcting vision | Safely carry out an eye dissection Describe how the eye focuses on near and far objects Explain the cause of long and short sightedness and how this can be corrected | | 3 | 6
Colours | List the colours of the visible spectrum. Describe how white light can be dispersed to give a range of different colours Explain why we see objects as a particular colour. | |---|--------------|---| | 3 | 8
Filters | Describe and explain how coloured filters change white light. Predict the colours of coloured objects in coloured light Apply knowledge to a range of exam questions | #### **Chemical Reactions** | Week | Lesson number/title | Core content | |------|---------------------------------|--| | 3 | Indicators of chemical reaction | Describe evidence for a chemical reaction Apply conservation of mass to simple chemical change Explain why, in terms of particles, mass stays the same in a reaction | | 4 | 2
Oxidation | Describe evidence reactions with oxygen Represent oxidation reactions using word equations and diagrams Apply the conservation of mass theory to oxidation reactions | | 4 | 3
Acids and alkalis | Identify common hazard symbols and describe appropriate safety precautions Record observations accurately and using good language Classify substances as acid, alkali or neutral using simple indicators | | 4 | 4
pH scale | Use Universal Indicator to determine the pH of a range substances Classify substances as strong or weak acids or alkalis based on their pH Explain why universal indicator is better than simple indicators | |---|----------------------------------|---| | 5 | 5
Metal and acid
reactions | Describe evidence for the reaction of metals and acids Write word equations to represent the reaction of metals and acids Describe the test for hydrogen gas and the positive result | | 5 | 7
Neutralisation | Describe what happens to the pH when acids are added to alkalis or vice versa Represent the reaction of acids and alkalis using word equations Name the salt produced in acid alkali reactions | | 5 | 9
Antacid investigation | Describe a method to find the best antacid medicine Identify variables to change, measure and control Design a table for results | | 5 | 10
Antacid analysis | Collect accurate results and check for reproducibility Display the results appropriately, explaining the choice of graph Use the results to write a conclusion saying which is the best antacid | | 6 | Test | | | 6 | Feedback | | # Biological Systems and Processes - ATL link (Health Project - campaign about modern health concerns) | Week | Lesson number/title | Core content | |------|-----------------------------|---| | 7 | 1
Musculoskeletal system | Describe the functions of the skeletal system Describe the role of different parts of joints Describe the function and give examples of antagonistic muscle pairings | | 7 | 2
Muscles | Identify major muscle groups involved in common movements Describe how some of the muscular tissue in our organs work Measure the force of some of the skeletal muscles in the body | | 7 | The respiratory system | Describe the function of the structures in the respiratory system Describe, using knowledge of diffusion, how gases are absorbed from the alveoli into the bloodstream Explain how alveoli are adapted for their function | | 7 | 4
Aerobic respiration | State the word equation for aerobic respiration Explain the importance of respiration | |---|---|--| | 8 | 5
Breathing | Explain the process involved in breathing Compare lung volumes in boys and girls Calculate means and identify the range in data collected | | 8 | 6
Effects of exercise and
respiration | Describe the effects of exercise on the respiratory system Explain the effects of exercise on the respiratory system | | 8 | 7
Anaerobic respiration | State the word equation for anaerobic respiration Explain the importance of this type of respiration & where it is used | | 9 | 8 How does exercise affect breathing rate? - an investigation | Identify variables in an investigation Describe a method to test a hypothesis | | 9 | 9
Effects of smoking | Describe the effects of cigarettes on the tissues of the lungs and on gaseous exchange Describe and explain the impacts on the health of smokers and their unborn babies Describe trends in secondary data | | 9 | 10
Effects of alcohol | Describe the effects of alcohol on the body and behaviour Describe the effects of alcohol on health and the developing foetus Display secondary data appropriately | #### **Forces in Action** | Week | Lesson number/title | Core content | |------|------------------------------------|---| | 9 | 1
Levers and Pivots | Identify pivots and levers Calculate moments Explain why levers are force multipliers | | 10 | 2
Moments and Balance
Part 1 | Explain, in terms of turning forces, how an object can be made to balance. Describe moments as clockwise or anticlockwise | | 10 | 3
Moments and Balance
Part 2 | Describe how we can change the moment of a force to balance
an object Use the moment equation to calculate force needed or distance
to make turning forces balance | | 10 | 4
Work done Part 1 | Define and calculate work done Use the formula for work done to calculate work done, force or distance Change units for distance | | 11 | 5
Work done Part 2 | Define power Use both formulae for work done and power Change units where appropriate and round answers to 3 significant figures | | 11 | 6
Simple Machines | Define and give examples of simple machines Describe how some simple machines work Process and describe patterns in secondary data | |----|---------------------------------------|--| | 11 | 7
Investigating Elastic
Objects | Describe elastic deformation Identify variables Write a method for investigating the extension of a spring. | | 11 | Test | | | 12 | Feedback | | | 12 | 8
Hooke's law | Recognise and explain what is meant by 'elastic limit' Analyse graphs for Hooke's law Use Hooke's Law to calculate force, extension or spring constant | #### **Variation** | Week | Lesson number/title | Core content | |------|-----------------------------------|--| | 12 | 1
Variation between
species | Explain what is meant by a 'species' Give examples of continuous and discontinuous variation Collect and display data on variation, explaining the choice of graph | | 13 | 2
Practical - Human
Variation | Collect data on variation in human height and handspan. Plot data on a graph Describing patterns in data | |----|--|---| | 13 | 3
Why is variation
important? | Use and explain a simple model to represent sexual reproduction Compare chromosome content in body cells and gametes Explain why sexual reproduction leads to variation | | 13 | 4
DNA | Define the term DNA, gene and chromosome Describe the work of Franklin, Wilkins, Watson and Crick Create a model of DNA | | 13 | 5 DNA Case Study -
Franklin, Wilkins,
Watson and Crick | Understand how the work of Watson, Crick and Franklin contributed to our understanding of the structure of DNA | | 14 | 6
Inheritance | Use genetic terms correctly Draw a simple Punnett square to show inheritance Determine the probability of offspring displaying a particular characteristic | #### **Materials and the Earth** | Week | Lesson number/title | Core content | |------|---------------------|--------------| | | | | | 14 | 1
Structure of the Earth | Label a diagram showing the structure of the Earth and compare the layers in terms of composition, thickness and temperature Explain how the continents move Describe some of the evidence for 'continental drift' | |----|---|--| | 14 | 2
Igneous rock | Describe the formation of intrusive and extrusive igneous rocks Explain the link between cooling rate and crystal sizes Describe the properties of igneous rock | | 15 | 3
Sedimentary rock | Describe the weathering, transportation and deposition of rocks at the Earth's surface Describe the formation of sedimentary rocks Describe the properties of sedimentary rocks | | 15 | 4
Metamorphic rock and
the rock cycle | Describe the formation of metamorphic rocks Describe the properties of metamorphic rocks Apply knowledge of all 3 rock type formations to questions on the rock cycle | | 15 | 5
Fossils | Describe how fossils are formed Explain how fossils move to the surface of the Earth Interpret diagrams to identify the relative age of fossils | | 15 | 6
Crude oil | Describe the composition of crude oil using keywords Draw the first 5 alkanes Evaluate the extraction and use of crude oil | | 16 | 8
Earth's changing
atmosphere | Compare the earth's early atmosphere to the atmosphere today Explain why carbon dioxide and oxygen levels changed in Earth's early history | | 16 | 9
Carbon cycle | Describe the main processes involved in the cycling of carbon | |----|-----------------------------|---| | 16 | 10
The greenhouse effect | Describe the greenhouse effect Explain the significance of an increased greenhouse effect | | 17 | 11
Climate change | Describe some of the potential consequences of climate change Analyse data related to climate change | | 17 | 12
Types of material | Describe some of the properties of ceramics, polymers and
composites | | 17 | Test | | | 17 | Feedback | | #### Reactivity | Week | Lesson number/title | Core content | |------|---------------------|--------------| | | | | | 18 | 1
Electron configuration | Use the periodic table to work out numbers of protons, neutrons and electrons Draw and write the electron configuration for given atoms Explain why most atoms react but group 0 do not | |----|--|---| | 18 | 2
lons | Draw and describe the formation of ions Describe the formation of one type of chemical bond Describe the link between place in the periodic table and the ion formed | | 18 | 3
Chemical Formulae | Write and interpret chemical formula Calculate relative formula mass. | | 19 | 4
Symbol Equations | Write and interpret chemical formulae Balance symbol equations | | 19 | 5
Acids and metals | Write word (balanced symbol) equations for the reactions of metals and acids Describe the test for hydrogen gas | | 19 | 6
Acids and Metal Oxides | Write equations to describe the reactions of metal oxides and acids Describe the steps in the production of a salt from a given metal oxide and an acid Compare the reactions of metal oxides with those of metals and acids. | | 19 | 7
Making salts | Define what we mean by 'salt' Describe how to make a salt using filtration and crystallisation | | 20 | 8
Reactions of metal
carbonates with acids | Write word and symbol equations for the reaction of metal carbonates with acids Describe the test for carbon dioxide and the positive result | | 20 | 9
Neutralisation | Write word equations to represent the products and reactants in acid and alkali reactions Explain what we mean by neutralisation Describe a method of carrying out neutralisation accurately | |----|-------------------------|--| | 20 | 10
Reactivity series | Describe the reactivity series for metals Use the reactivity series to predict a reaction Write word and symbols equations to represent the reactions | | 21 | 11
Metal ores | Explain why most metals are not found in their element form Describe how metals can be extracted using carbon Write word and symbol equations to represent the reactions | | 21 | 12
Displacement | Use the reactivity series to predict whether a reaction will occur Write word and symbol equations to represent reactions seen | | 21 | 13
Alloys | Link properties of metals to their uses Describe the difference between a pure metal and an alloy Explain why alloys are more useful than pure metal | ### Space - ATL Link (Space Project - space tourism) | Week | Lesson number/title | Core content | |------|---------------------|--| | 22 | 1
Gravity | Describe the term 'non-contact force' and give examples Describe the forces of attraction between the Earth & moon and the Earth and the Sun Describe the properties that affect the sizes of gravitational forces between different objects in the Solar system | | 22 | 2
Weight and mass | Describe how gravity varies in the solar system Calculate weight, mass and gravitational field strength on Earth and other planets Change units and express answers to a given number of significant figures | |----|----------------------|--| | 22 | 3
Universe | Define a light year and explain why they are used Describe Earth's place in the universe Describe what a star is and why it emits light | | 23 | Test | | | 23 | Feedback | | | 23 | 4
Seasons | Use secondary data to describe and explain patterns in year lengths in the solar system Describe and explain differences in day length, position of the sun and temperatures in different seasons Explain why the Earth experiences seasons, but not every other planet in the solar system does | #### **Sound waves** | Week | Lesson number/title | Core content | |------|---------------------|--------------| | | | | | 23 | 1
Sound waves | Label the main features of a wave diagram Compare light and sound waves | |----|--|---| | 23 | 2 Pitch and frequency & Amplitude and volume | Describe how the pitch of sounds is determined Interpret oscilloscope traces Describe how the loudness of a sound is determined Interpret oscilloscope traces | | 24 | 3
Speed of sound | Calculate the speed of sound in air Describe how and explain why the speed of sound varies in different media in terms of particles Rearrange equations | | 24 | 4
The ear | Identify key structures in the ear Describe how to parts of the ear work together to allow us to hear sound | | 24 | 8
Hearing and
Ultrasound | Explain what is meant by 'hearing range' and how this differs with age and in different animals Measure the loudness of common sounds using appropriate units Describe what is meant by ultrasound Describe uses of ultrasound | | 24 | 9
Sound devices | Describe how a microphone works Describe how a loudspeaker works Explain why the frequency of the sound produced in the speaker is the same as the original sound wave | #### Matter | Week | Lesson number/title | Core content | |------|---------------------------|---| | 25 | 1
Particle theory | Describe the arrangement and motion of particles in a solid, liquid and gas Define diffusion in terms of particle concentration and explain effect of temperature on diffusion Explain changes of state in terms of particles | | 25 | 2
Change of State | Explain why changes of state using particle theory. Interpret heating and cooling curves. | | 25 | 3
Density | Explain observations using particle model and density Compare densities and predict if objects will float or sink Calculate the density of regular objects | | 26 | 4
Diffusion | Define diffusion and Brownian motion Describe how diffusion affects a substance in solution or the air Explain why diffusion is passive using Brownian motion | | 26 | 5
Pressure in liquids | Describe the action of pressure in liquids and the cartesian diver Describe how the pressure changes as you go deeper in a liquid | | 26 | 6
Floating and sinking | Describe the effect of upthrust on the weight of objects Explain why objects float in terms of resultant forces Explain how upthrust can vary in water | | 26 | 7
Atmospheric pressure | Define atmosphere and describe how atmospheric pressure is caused Explain how changes in atmospheric pressure can happen and what the effects are Calculate percentage change | #### **Energetics** | Week | Lesson number/title | Core content | |------|---|--| | 27 | 1
What is a rate? | Describe ways to measure the rate of a reaction Display data recording rate of reaction appropriately | | 27 | 2
Reaction rate graphs | Take readings from reaction rate curves Describe how and explain why reaction rate changes during a reaction | | 27 | The Effect of Concentration | Identify variables to change, measure and control to test a hypothesis Display data appropriately Describe and explain the effect of concentration on the rate of reaction | | 28 | Test | | | 28 | Feedback | | | 28 | 4
Catalysts | Describe what a catalyst is and how it affects the rate of a reaction Describe the test for oxygen and its positive result | | 28 | 5
Exothermic and
Endothermic
reactions | Define endothermic and exothermic reactions Recognise endothermic and exothermic reactions from temperature changes | | | | Make and explain suggestions to changes in the equipment that
would improve the data collected. | |----|---|--| | 29 | 6
Combustion | Define a combustion reaction Explain what is meant by complete and incomplete combustion and name the products | | 29 | 7
Complete and
Incomplete
combustion | Compare complete and incomplete combustion Evaluate different fuels | | 29 | 8
Thermal
decomposition | Define thermal decomposition Write word and symbol equations to represent thermal decomposition reactions Carry out a thermal decomposition reaction and explain it in terms of conservation of mass | #### Magnetism - ATL Link (Music - how loudspeakers work) | Week | Lesson number/title | Core content | |------|----------------------|---| | 30 | 1
Magnetic fields | Draw the field lines around a magnet Describe the magnetic field around a magnet, or the Earth, using fields lines | | 30 | 2
Magnetic forces | Describe the forces of attraction and repulsion between magnets Explain attraction and repulsion of magnets using field line patterns. | | 30 | 3
Electromagnets | Describe how to make a simple electromagnet Draw the shape of the magnetic field around a straight wire Identify key variables for an investigation of electromagnets | |----|-------------------------------------|---| | 30 | 4
Electromagnet
investigation | Investigate the factors which affect the strength of an electromagnet Plot a graph of data Analyse secondary data to draw conclusions | | 31 | Revision | | | 31 | EoY | | | 31 | Feedback | | | 32 | 5
Uses of Electromagnets | To state how electromagnets are used in a variety of devices To understand how the motor effect is caused by magnetic fields To state the factors affecting the speed of a direct motor | This allows for no loss of lessons, could continue into following weeks and allows for more revision around EOY assessment | • | | | |----|---|---| | 33 | Biological Systems
George Washington
Carver | Describe George Washington Carver's contribution to botany Describe what is meant by crop rotation and how it improved crop yields Explain the advantages of crop rotation | | 33 | Biological Systems
Application of
Knowledge | Write a conclusion from secondary data on stomata investigation Explaining the adaptation of leaves in relation to transpiration, rate of photosynthesis and plant growth | | 33 | Chemical Reactions
Case study of Helen
Sharman | Understand key ideas about the life and work of Helen Sharman | | 34 | Forces in action
Robert Hooke and Uses
of Elastic Objects | Describe the work of Robert Hooke Describe a use of an elastic object and explain the significance of Hooke's Law in context Describe how the spring constant effects how useful an elastic object is | | 34 | Space
Case study of Maggie
Aderin-Pocock | Understand key ideas about the work of Dr Maggie Aderin-Pocock | | 34 | Reactivity
Harry Brearley | Describe the story of Harry Brearley Describe how he made stainless steel Compare stainless steel to other alloys | | 34 | Sound
Case study of James
West | Understand the life and work of James West | | 35 | Matter
Robert Brown | Describe the work of Robert Brown | |----|----------------------------|------------------------------------| | 35 | Energetics
Mildred Cohn | Describe the story of Mildred Cohn |